ЦЕРН сообщает о первых намеках на обнаружение хиггсовского бозона

В середине декабря в ЦЕРНе на специальном публичном мероприятии были представлены самые последние данные по поиску хиггсовского бозона на LHC на двух главных детекторах Большого адронного коллайдера — ATLAS и CMS. Краткий вывод: предварительные данные указывают на то, что существует некая частица с массой около 125 ГэВ, которая выглядит очень похоже на хиггсовский бозон. Никаких более сильных утверждений на данный момент сделать нельзя. Для этого потребуется дальнейший набор статистики, который начнется лишь весной следующего года.

Данные детектора ATLAS по двухфотонному рождению в области инвариантных масс от 100 до 160 ГэВ. Рисунок из статьи Combination of Higgs Boson Searches with up to 4.9 fb<sup>–1</sup> of pp Collision Data Taken at √s=7 TeV with the ATLAS Experiment at the LHC
Данные детектора ATLAS по двухфотонному рождению в области инвариантных масс от 100 до 160 ГэВ. Рисунок из статьи Combination of Higgs Boson Searches with up to 4.9 fb–1 of pp Collision. Data Taken at √s=7 TeV with the ATLAS Experiment at the LHC

Напомним, что хиггсовский бозон очень долго — и пока безуспешно — искали на самые разных ускорителях. В прошлом году в гонку включился Большой адронный коллайдер. Первые серьезные данные LHC, полученные на интегральной светимости свыше 1 fb–1, были обнародованы этим летом (про сами эти данные и про то, как вообще ищут хиггсовский бозон, см. в нашей новости Представлены первые серьезные данные LHC по поиску бозона Хиггса). Уже тогда пары месяцев серьезной работы ускорителя хватило, чтобы перекрыть практически все результаты многолетних поисков бозона Хиггса на Тэватроне. Единым махом был практически закрыт широкий диапазон возможных масс бозона (от 150 ГэВ и выше), и поиск сузился до интервала 114–150 ГэВ, наиболее трудного для экспериментаторов. По мере набора данных этот интервал сужался, а иногда в нём наблюдались подозрительные флуктуации то при одном, то при другом значении массы. Тем не менее до статистически достоверного сигнала дело пока не доходило (см. подраздел про хиггсовский бозон в нашей ленте новостей).

Однако с тех пор набранная статистика возросла в несколько раз, и ее обработка позволила физикам еще лучше подавить статистические шумы в данных. Результаты, обнародованные 13 декабря, основывались на обработке интегральной светимости почти 5 fb–1, то есть практически на всей статистике, набранной в этом году.

Главные результаты таковы. Коллаборация ATLAS сфокусировалась на анализе двух наиболее удобных каналов распада бозона Хиггса: распад на два фотона и распад на два Z-бозона. Предварительные результаты по этим двум каналам уже опубликованы на странице детектора ATLAS. В этих каналах распада данные однозначно показывают небольшое превышение над «бесхиггсовским» фоном, причем в обоих случаях превышение приходится примерно на одно и то же значение массы — 124–126 ГэВ. Суммарная статистическая значимость этого превышения составляет 3,6 стандартных отклонения (3,6 σ). Впрочем, при максимально жесткой интерпретации результатов она уменьшается до 2,3 σ.

Обновленные данные детектора CMS по поиску хиггсовского бозона. Показан график чувствительности детектора к хиггсовскому бозону с массой от 110 до 160 ГэВ. Рисунок из статьи Combination of SM Higgs Searches
Обновленные данные детектора CMS по поиску хиггсовского бозона. Показан график чувствительности детектора к хиггсовскому бозону с массой от 110 до 160 ГэВ (подробности про то, как читать эти графики, см. в нашей новости). Рисунок из статьи Combination of SM Higgs Searches

Коллаборация CMS смогла подготовить обновленные результаты сразу по всем каналам распада хиггсовского бозона на светимости 4,6 fb–1. Предварительные результаты доступны на сайте ЦЕРНа (CMS-HIG-11-032). Суммарный анализ всех каналов распада также показывает аналогичное превышение при массе примерно 123 ГэВ на уровне статистической значимости чуть выше 2 σ, причем ключевую роль и здесь играет распад на два фотона. Кроме того, обе коллаборации еще сильнее сузили интервал масс, в котором может «скрываться» бозон Хиггса — сейчас он составляет всего лишь 116–131 ГэВ.

Результаты «официального объединения» новых данных с этих двух детекторов пока озвучены не были. Оценка на глаз позволяет предположить, что при объединении статистическая значимость пика при 125 ГэВ возрастает примерно до 4 «сигма». На научном жаргоне это позволяет говорить о том, что в эксперименте имеется «указание на существование новой частицы», но о настоящем открытии речь пока не идет (для этого потребуется усилить «контрастность» пиков и увеличить статистическую значимость до 5 σ). Вероятность того, что этот пик — не проявление реальной частицы, а лишь статистическая флуктуация, имевшая место сразу в обоих детекторах, довольно мала. Однако от такого варианта пока никто не зарекается — в физике элементарных частиц были прецеденты «исчезновения» поначалу очень статистически значимых пиков.

Неминимальные варианты хиггсовского механизма

Стандартная модель требует некоторого механизма нарушения электрослабой симметрии, но не указывает, как именно этот механизм работает. В связи с этим теоретики сейчас пробуют самые разнообразные варианты устройства хиггсовского сектора теории. Все эти варианты можно условно назвать «неминимальными» хиггсовскими моделями — в противовес той минимальной конструкции, которая обычно рассматривается в Стандартной модели. Здесь кратко описаны некоторые из этих моделей.

Двух- и многодублетные хиггсовские модели

В Стандартной модели считается, что хиггсовские поля изменяются при электрослабых преобразованиях строго определенным образом — они образуют один электрослабый дублет. Можно безболезненно расширить Стандартную модель, рассмотрев не один, а два дублета хиггсовских полей. В этом случае после нарушения электрослабой симметрии возникает не один, а пять физических хиггсовских бозонов — три электрически нейтральных (обычно их обозначают H, h, A) и пара заряженных (H+ и H).

В такой двухдублетной хиггсовской модели (2HDM) есть много новых параметров, которые заранее неизвестны, и потому можно рассматривать разные их значения. В простейших вариантах три нейтральных бозона имеют определенную CP-четность — h (легкий скаляр, CP = +1), H (тяжелый скаляр, CP = +1), A (псевдоскаляр, CP = –1), но есть целый класс двухдублетных моделей, где скаляры и псевдоскаляры смешиваются. В этом варианте хиггсовский сектор является источником CP-нарушения и может быть отчасти ответствен за наблюдаемое CP-нарушение в нейтральных мезонах.

Существуют варианты двухдублетной модели (например, инертная двухдублетная модель), в которых ненулевое вакуумное среднее приобретает только один из двух дублетов. В этом случае хиггсовский бозон, возникающий из второго дублета, оказывается массивным, но не может распасться ни на какие частицы. Такой бозон может быть кандидатом в частицы темной материи.

Два хиггсовских дублета возникают и в минимальном суперсимметричном расширении Стандартной модели (MSSM, minimal supersymmetric Standard Model).

Рассматриваются также и многодублетные хиггсовские модели. Количество физических хиггсовских бозонов в таких теориях возрастает, и имеет смысл их рассматривать только в том случае, если они позволяют «естественным способом» решить какую-то проблему. Например, в так называемой модели приватного Хиггса вводится по одному дублету хиггсовских полей для каждого фермиона, и при этом удается устранить проблему иерархий для масс фермионов.

Недублетные хиггсовские поля

Даже если имеется множество хиггсовских полей, то, как показывают экспериментальные данные, «главное» из них должно быть электрослабым дублетом. Однако дополнительные поля могут преобразовываться иным образом под действием электрослабой группы — они могут быть синглетами, триплетами и т. д. Поэтому рассматриваются также модели, где в дополнение к дублету (или дублетам) вводятся и других хиггсовские бозоны.

Эти теории имеют свои особенности. Например, в теории с триплетными хиггсовскими полями возникают хиггсовские бозоны с электрическим зарядом 2 (H++ и H--). Определенный вариант теории «два дублета + один синглет» используется в одной из разновидностей суперсимметричных теорий — NMSSM (next-to-minimal supersymmetric Standard Model).

Модели «малого Хиггса» (Little Higgs models)

В моделях «малого Хиггса» хиггсовский бозон — составная частица, а фундаментальными являются некие новые частицы, имеющие массы в районе 10 ТэВ или выше. Построены эти модели в духе моделей из низкоэнергетической адронной физики, в которых частицы, ответственные за взаимодействие нуклонов (пи-мезоны), заметно легче, чем характерный энергетический масштаб теории.

Сильная сторона моделей малого Хиггса в том, что они естественным образом устраняют так называемый «LEP-парадокс». Он состоит в том, что, с одной стороны, косвенные данные указывают на то, что новые частицы начнут появляться на энергетическом масштабе в сотни ГэВ, но с другой стороны, эти частицы до сих пор поразительным образом прятались от наблюдения при чуть меньших энергиях (в частности, на электрон-позитронном коллайдере LEP с суммарной энергией 200 ГэВ). В модели малого Хиггса энергетический масштаб новых явлений сам собой смещается в область десятков ТэВ, что устраняет проблему.

Разумеется, нет также никакой гарантии, что эта частица (если она реальна) является долгожданным хиггсовским бозоном. Для того чтобы убедиться, что это действительно он, потребуется найти аналогичный пик не только в двухфотонном распаде, но и в других наборах частиц, и сопоставить интенсивности этих пиков. Наконец, даже если этот сигнал пройдет проверки и окажется хорошим кандидатом в бозоны Хиггса, останется самый главный вопрос: бозоном Хиггса какой именно модели он является. На всё это потребуется дополнительное время и многократное увеличение статистики.

Официальные результаты, касающиеся поиска хиггсовского бозона, уже находятся в открытом доступе на страницах ATLAS Higgs Public Results и CMS Higgs Physics Results. Дополнительную информацию про эти результаты и про физику на LHC в целом можно найти в блоге Matt Strassler.

Автоор новости Игорь Иванов

18 Декабря 2011, 18:52    Den    17708    3

Комментарии (3):

Илья  •  19 Декабря 2011, 14:26

А почему автором текста значится Den, тогда как это текст Игоря Иванова с Элементов?

den  •  19 Декабря 2011, 15:20

К Илья от 19 Декабря 2011, 14:26

 

Спасибо за замечание, исправлено.

VimanaPro  •  19 Декабря 2011, 16:55

Бога (бозона Хиггса ) нет:

M2=К*h2c2/Lp2(1-v2/c2)

K - коэфициент конфаймента для бран

h - постоянная Планка

c - скорость света

Lp - длина Планка

v - скорость движения

Только зарегистрированные пользователи могут оставлять комментарии. Войдите или зарегистрируйтесь пожалуйста.